Many aspects of materials deformation and failure are controlled by atomic-scale phenomena that can be explored using molecular statics and molecular dynamics simulations. However, many of these phenomena involve processes on multiple length scales with the result that full molecular statics/molecular dynamics simulations of the entire system are too large to be tractable. In this review, we discuss hybrid models that perform molecular statics/molecular dynamics simulations "without all the atoms," aimed at retaining atomistic detail at a fraction of the computational cost. These methods couple a fully atomistic model in critical regions to regions described by less-expensive continuum methods where they can provide an adequate representation of the important physics. We give an overview of the challenges such models present, with a focus on recent work to address issues of dynamics and finite (non-zero) temperature.

Additional Metadata
Journal MRS Bulletin
Citation
Miller, R. E, & Tadmor, E.B. (Ellad B.). (2007). Hybrid continuum mechanics and atomistic methods for simulating materials deformation and failure. MRS Bulletin, 32(11), 920–926.