Lucas' theorem gives a congruence for a binomial coefficient modulo a prime. Davis and Webb (Europ. J. Combinatorics, 11 (1990), 229-233) extended Lucas' theorem to a prime power modulus. Making use of their result, we count the number of times each residue class occurs in the nth row of Pascal's triangle (mod 8). Our results correct and extend those of Granville (Amer. Math. Monthly, 99 (1992), 318-331).

Additional Metadata
Journal European Journal of Combinatorics
Citation
Huard, J.G. (James G.), Spearman, B.K. (Blair K.), & Williams, K.S. (1998). Pascal's triangle (mod 8). European Journal of Combinatorics, 19(1), 45–62.