An unmanned aerial ad hoc network (UAANET) is a special type of mobile ad hoc network (MANET). For these networks, researchers rely mostly on simulations to evaluate their proposed networking protocols. Hence, it is of great importance that the simulation environment of a UAANET replicates as much as possible the reality of UAVs. One major component of that environment is the movement pattern of the UAVs. This means that the mobility model used in simulations has to be thoroughly understood in terms of its impact on the performance of the network. In this paper, we investigate how mobility models affect the performance of UAANET in simulations in order to come up with conclusions/recommendations that provide a benchmark for future UAANET simulations. To that end, we first propose a few metrics to evaluate the mobility models. Then, we present five random entity mobility models that allow nodes to move almost freely and independently from one another and evaluate four carefully-chosen MANET/UAANET routing protocols: ad hoc on-demand distance vector (AODV), optimized link state routing (OLSR), reactive-geographic hybrid routing (RGR) and geographic routing protocol (GRP). In addition, flooding is also evaluated. The results show a wide variation of the protocol performance over different mobility models. These performance differences can be explained by the mobility model characteristics, and we discuss these effects. The results of our analysis show that: (i) the enhanced Gauss–Markov (EGM) mobility model is best suited for UAANET; (ii) OLSR, a table-driven proactive routing protocol, and GRP, a position-based geographic protocol, are the protocols most sensitive to the change of mobility models; (iii) RGR, a reactive-geographic hybrid routing protocol, is best suited for UAANET.

Additional Metadata
Keywords mobility models, routing, UAANET, UAV
Persistent URL
Journal Aerospace
Biomo, Jean-Daniel, Kunz, Thomas, St-Hilaire, Marc, & Zhou, Yifeng. (2015). Unmanned Aerial ad Hoc Networks: Simulation-Based Evaluation of Entity Mobility Models’ Impact on Routing Performance. Aerospace, 2(3), 392–422. doi:10.3390/aerospace2030392