We present 1D analytical solutions for channel flow in orogens driven by various types of pressure gradients. Our calculations demonstrate that lateral density gradients in the upper crust, such as would occur across a suture zone separating arc rocks from pericratonic sediments provide a driving force for Poiseuille flow as large as topographic gradients observed in modern mountain belts. For cases for which the gradients are external (topographic and lateral density gradients) and internal (e.g. partial melting of channel material) to the channel, inclination decreases and increases the Poiseuille component of the average flow-velocity within the channel by the cosine and sine of the slope, respectively. The magnitude of the pressure gradient consequent upon the buoyancy generated by partial melting of metapelites in a channel with a 30° slope, such as would occur above an underthrusting basement ramp, is similar to that of topographic or lateral density gradients. Channel flow up a ramp could thus constitute an important exhumation mechanism in large hot orogens. Our calculations indicate that mid-crustal channel flow was a highly likely process in the Late Cretaceous-Paleocene setting of the southeastern Canadian Cordillera. The flow was first driven by the lateral density contrast between pericratonic sediments and the arc-related Intermontane terrane, then by combined effect of topographic gradient and melt-induced buoyancy of the Lower Selkirk Allochthon (part of the Shuswap Complex). Flow up the underthrusting basement ramp resulted in exhumation from mid- to upper-crustal levels. Channel flow then migrated downward to involve basement and overlying cover sequence rocks. Our results indicate that syn-convergent channel flow was a viable and very likely process in the southeastern Canadian Cordillera.

Additional Metadata
Keywords 1D analytical solutions, Channel flow, Driving forces, Orogens, Southeastern Canadian Cordillera
Persistent URL dx.doi.org/10.1016/j.tecto.2017.06.023
Journal Tectonophysics
Gervais, F. (Félix), & Ranalli, G. (2017). The effects of lateral density gradients, slopes and buoyancy on channel flow: 1D analytical solutions and applications to the SE Canadian Cordillera. Tectonophysics, 712-713, 578–588. doi:10.1016/j.tecto.2017.06.023