In this paper, we present an Adaptive Learning (specifically, Learning Automata) Like (LAL) mechanism for congestion avoidance in wired networks. Our algorithm, named as Learning Automata Like Random Early Detection (LALRED), is founded on the principles of operations of the existing Random Early Detection (RED) [1] congestion avoidance mechanisms, augmented with a LAL philosophy. Our approach helps to improve the performance of congestion avoidance by adaptively minimizing the queue loss rate and the average queue size. Simulation results obtained using NS2 establish the improved performance of LALRED over the traditional RED, which was chosen as the benchmark for performance comparison purposes.

Additional Metadata
Persistent URL dx.doi.org/10.1109/AICCSA.2009.5069368
Conference 7th IEEE/ACS International Conference on Computer Systems and Applications, AICCSA-2009
Citation
Misra, S. (Sudip), Yanamandra, S. (Sreekeerthy), Oommen, J, & Obaidat, M.S. (Mohammad S.). (2009). An adaptive learning-like solution of random early detection for congestion avoidance in computer networks. In 2009 IEEE/ACS International Conference on Computer Systems and Applications, AICCSA 2009 (pp. 485–491). doi:10.1109/AICCSA.2009.5069368