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Abstract. There are many paradigms for pattern classification. As op-
posed to these, this paper introduces a paradigm that has not been re-
ported in the literature earlier, which we shall refer to as the Nearest
Border (NB) paradigm. The philosophy for developing such a NB strat-
egy is as follows: Given the training data set for each class, we shall first
attempt to create borders for each individual class. After that, we advo-
cate that testing is accomplished by assigning the test sample to the class
whose border it lies closest to. This claim is actually counter-intuitive,
because unlike the centroid or the median, these border samples are often
“outliers” and are, really, the points that represent the class the least.
However, we have formally proven this claim, and the theoretical results
have been verified by rigorous experimental testing.
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1 Introduction

The problem of classification in machine learning can be quite simply described
as follows: If we are given a limited number of training samples, and if the class-
conditional distributions are unknown, the task at hand is to predict the class
label of a new sample with minimum risk. Within the generative model, one
resorts to modeling the class-conditional distributions p(x|wi) and priors p(wi)

and p(x), and then computing the a posteriori distribution p(wi|x) = p(x|wi)p(wi)
p(x)

after the testing sample arrives. The strength of this strategy is that one obtains
an optimal performance if the assumed distributions are the same as the actual
one. The limitation, of course, is that it is often difficult, if not impossible, to
compute. The alternative is to directly approximate the posterior distribution
itself. This paper advocates such a philosophy.

The goal of this paper is to present a new paradigm in pattern recognition,
which we shall refer to as the Nearest Border (NB) paradigm. This archetype
possesses similarities to many of the well-established methodologies in pattern
recognition, and can also be seen to include many of their salient facets/traits.
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There are four family algorithms that are most closely related to our NB
paradigm. They include i) Prototype Reduction (PR) schemes [6], ii) Border
Identification (BI) algorithms [6], iii) “Anti-Bayesian” Order-Statistics (OS)
based algorithms [6], and iv) Support Vector Machines (SVMs) [8].

The novel contributions of this paper are the following:

1. We propose a new pattern recognition paradigm, the Nearest Border
paradigm, in which we create borders for each individual class, and where
testing is accomplished by assigning the test sample to the class whose border
it lies closest to.

2. Our paradigm falls within the family of PR schemes, because it yields a
reference set which is a small subset of original training patterns. The testing
is achieved by only utilizing the latter.

3. Our paradigm falls within the family of BI methods.
4. The Nearest Border paradigm is essentially “anti-Bayesian” in its salient

characteristics. This is because the testing is not done based on central con-
cepts such as the centroid or the median, but by comparisons using these
border samples, which are often “outliers” and which, in one sense, represent
the class the least.

5. The Nearest Border paradigm is closely related to the family of SVMs, be-
cause the computations and optimization used are similar to those involved
in deriving SVMs.

2 Method

2.1 The Theory of the Nearest Border (NB) Paradigm

We assume that we are dealing with a classification problem involving g classes:
{ω1, · · · , ωg}. For any specific class ωi, we define a region Ri that is described
by the function fi(x) = 0 (which we shall refer to as its “border”), where Ri =
{x|fi(x) > 0}. We describe Ri in this manner so that it is able to capture
the main mass of the probability distribution pi(x) = p(x|ωi). All points that lie
outside ofRi, are said to fall in its “outer” region, R̄i, where R̄i = {x|fi(x) < 0}.
These points are treated as outliers as far as class ωi is concerned. The function
fi(x) is crucial to our technique because it explicitly defines the region Ri.
Formally, the function fi(x) must be defined in such a way that:

1. fi(x) is the signed distance from the point x to the border such that fi(x) >
0 if x ∈ Ri, and fi(x) < 0 if x ∈ R̄i;

2. If fi(x1) > fi(x2), then pi(x1) > pi(x2);
3. If fi(x) > fj(x), then p(wi|x) > p(wj |x).
In order to predict the class label of a new sample x, we calculate its signed
distance from each class, and thereafter assign it to the class with the minimum
distance. In other words, we invoke the softmax rule: j = argmaxgi=1 fi(x).

The main challenge that we face in formulating, designing and implementing
such a NB theory lies in the complexity of conveniently and accurately procuring
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such borders. The reader will easily see that this is equivalent to the problem of
identifying functions {fi(x)} that satisfy the above constraints. Although a host
of methods to do this are possible, in this paper, we propose one that identifies
the boundaries using the one-class SVM.

2.2 NB Classifiers: The Implementations of the NB Paradigm

The basic Nearest Centroid (NC) approach only uses the means of the class-
conditional distribution, and this is the reason why it is not effective for the
scenario when the variances of the various classes are very different. The NC
scheme can be extended to allow different class variance by using, for example,
Gaussian Mixture Model. The difficulty of extending any linear model, e.g. SVM,
from its two-class formulation to its corresponding multi-class formulation, lies
in the fact that a hyperplane always partitions the feature space into two “open”
subspaces, implying that this can lead to ambiguous regions that may be gen-
erated by some extensions of the two-class regions for the multi-class case. The
most popular schemes to resolve this are the one-against-all (using a softmax
function) and one-against-one solutions.

As an one-class model, the work based on Tax and Duin’s Support Vector Do-
main Description (SVDD or one-class SVM) [5] aims to find a closed hypersphere
in the feature space that captures the main part of the distribution. By examining
the corresponding SVM, we see that the hypersphere obtained by the SVDD is
the estimate of the features’ Highest Density Region (HDR). In particular, for the
univariate distribution, the estimation of the Highest Density Interval (HDI) in-
volves searching for the threshold p∗ that satisfies:

∫
x:p(x|D)>p∗ p(x|D)dx = 1−α.

The (1 − α)% HDI is defined as Cα(p
∗) = {x : p(x|D) ≥ p∗}. If we now define

the Central Interval (CI) by the interval:

Cα(l, u) = {x ∈ (l, u)|P (l ≤ x ≤ u|D) = 1− α, P (x ≤ l) =
α

2
, P (x ≥ u) =

α

2
},

one will see that, for symmetric unimodal univariate distribution, HDI coincides
with the CI. However, for nonsymmetric univariate distributions, the HDI is
smaller than the CI. For known distributions, the CI can be estimated by the
corresponding quantile. However, for unknown distributions, the CI can be es-
timated by a Monte Carlo approximation (or by the histogram, or the Order
Statistics). However, in the context of this paper, we remark that by virtue of
Vapnik’s principle, it is not necessary to estimate the density by invoking a non-
parametric method. For multivariate distributions, we can estimate the (1−α)%
HDR Cα(f) by using the equation:

min
f

∫

f(x)≥0

1dx, s.t.

∫

x:f(x)≥0

p(x|D)dx = 1− α. (1)

We shall refer to this optimal contour f∗(x) = 0 as the (1− α)-border/contour.
Our idea for classification is the following: We can learn a hypersphere using

SVDD for each class in the feature space in order to describe the border of this
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class. We then calculate the distance from a unknown sample to the border of
each class and assign it to the class with the minimum distance. The training
phase of our approach is to learn the hypersphere fi(x) = 0 for each class. The
prediction phase then involves assigning the unknown sample x using the rule:
j = argmaxgi=1 fi(x). In particular, we note that:

1. fi(x) ∈ R is the signed distance of x from the corresponding boundary;
2. For points inside the ith hypersphere, fi(x) > 0;
3. For points outside the hypersphere, fi(x) < 0. Further, the larger fi(x) is,

the closer it is to class ωi, and the higher the value of p(wi|x) is. From the
parameters of fi(x), we can see that fi(x) considers both mean and variance
of the distribution. It can be further enhanced by the normalized distance
through the operation of dividing it by Ri (the radius of the hypersphere),

that is fi(x)
Ri

.

We refer to this approach as the Nearest Border approach based on Hyper-
Sphere (NB-HS). Hereafter, the hypersphere based NB using the un-normalized
and normalized decision rules will be denoted by ν-NB, and ν-NBN, respectively,
where ν is the upper bound of the fraction of outliers and the lower bound of
the fraction of the support vectors in SVDD. As the number of training samples
increases to infinity, these two bounds converge to ν. However, in practice, we
usually have a very limited number of training samples. In order to obtain ν
which corresponds to the α fraction of outliers, firstly, we need to let ν = α,
and then reduce ν gradually until the α fraction of outliers are obtained. This
variant of NB will be named the α-NB in the subsequent sections.

3 Experimental Results

The NB schemes were rigorously tested. Our computational experiments can
be divided into two segments. First, we verify the capability of our method on
three artificial data sets. Then, we statistically compared our approach with
benchmark classifiers on 17 well-known real-life data sets.

Accuracy on Synthetic Data: We verified our methods on three synthetic
data sets described as follows and shown in Fig. 1. Each data set has four classes
and 100 two-dimensional points in each class. In the SameVar data, all classes
have the same variance, while in DiffVar, the classes have different variances.
NonLinear is a nonlinear data set.

For the artificial data, we compared our method with the Naive Bayes [2],
1-NN [2], NC [7], and SVM [4] classifiers. Linear kernel was used for the NBs,
NC, and SVM on the first two data sets, and the Radial Basis Function (RBF)
kernel was used on the last one. We ran a 3-fold cross-validation on each data
set 20 times. The mean accuracies and standard deviations are shown in Fig. 2a.

On the SameVar data, first, we can see that there is no significant differ-
ence between the ν-NB and ν-NBN, and α-NB. All of them yielded an almost-
equivalent accuracy as the Naive Bayes. Second, it can be seen from Fig. 1a that
the NB was able to identify the centers of each class accurately. The borders
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(a) SameVar
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Fig. 1. Plots of the synthetic data sets

have the same volume, which demonstrates that the NB can identify the borders
consistent with the variances. The NB approaches yielded an accuracy similar
to the NC, which is reasonable because the identical variance of all classes is of
no consequence to the NB. Third, the NN and SVM do not obtain comparable
results, because the distance measure of the NN is affected by noise, and the
SVM is not able to “disentangle” each class well using an one-versus-all scheme.

On the DiffVar data, first, we see that the results again confirm that the NB
can identify the borders consistent with the variances (see Fig. 1b). The mean
accuracies of all the NB approaches were very close to the Naive Bayes classifier.
However, the NC yielded worse results than the NB. This is because the variance
information helped the NB, while the NC scheme did not consider it.

Finally, for the NonLinear data, first, we affirm that all our NB methods and
the SVM yielded comparably good results. Second, the Naive Bayes did not work
well this time, because the data is not Gaussian. Further, the kernel NC was not
competent either, because the data in the high-dimensional feature space have
different variances for all the classes.
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Fig. 2. Performance on synthetic and real-life data

Statistical Test on Real-Life Data: In order to test the performance of our
NB methods, we compared them with benchmark classifiers on 17 real-life data
sets. The benchmark methods included were the 1-NN, NC, Nearest Subspace
(NS) [3], and the SVM. We used the RBF kernel in our classifiers. We applied the
Friedman test with Nemenyi test as a post-hoc test [1] on the accuracies of 3-fold
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cross-validation. We set the significance level to α = 0.05. Consequently the null
hypothesis (all classifiers are equivalent) was rejected. The Crucial-Difference
(CD) diagram of the Nemenyi test is illustrated in Fig. 2b.

First, as can be seen from the results, the difference between the ν-NB and
the ν-NBN is negligible. However, ν-NB has a marginally higher rank than the
ν-NBN. Second, the SVM obtained the highest rank. However, there is no sig-
nificant difference among the SVM, the NN, and the ν-NB under the current
significant level. This is quite a remarkable conclusion. Third, the performances
of NC and NS are very close. Last, if we examine the accuracies of the classifiers,
we can clearly identify two distinct groups: {SVM, NN, ν-NB, ν-NBN}, and {NC,
NS}, demonstrating that our newly-introduced NB schemes are competitive to
the best reported algorithms in the literature.

4 Conclusions and Future Work

In this paper, we introduced a new paradigm for classification which has not
been reported in the literature. We refer to it as the Nearest Border paradigm.
We emphasize that our methodology is actually counter-intuitive, because unlike
the centroid or the median, these border samples are often “outliers” and are,
indeed, the points that represent the class the least. The theoretical results
have been verified by rigorous experimental testing. We preliminarily assume
that the class-conditional distribution is unimodal and homoscedastic in feature
space. We will focus on a method which is able to learn the border of complex
distributions, for example using hyperellipse, local learning, or mixture models.

Acknowledgments. We acknowledge the valuable suggestions from the review-
ers. This research is support by Canadian NSERC Grants #RGPIN228117-2011.

References

1. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research 7, 1–30 (2006)

2. Mitchell, T.: Machine Learning. McGraw Hill, Ohio (1997)
3. Naseem, I., Togneri, R., Bennamoun, M.: Linear regression for face recognition.

PAMI 32(11), 2106–2112 (2010)
4. Scholkopf, B., Smola, A., Williamson, B., Bartlett, P.: New support vector algorithm.

Neural Computation 12, 1207–1245 (2000)
5. Tax, D., Duin, R.: Support vector domain description. Pattern Recognition Let-

ters 20, 1191–1199 (1999)
6. Thomas, A., Oommen, B.J.: The fundamental theory of optimal “anti-Bayesian”

parametric pattern classification using order statistics criteria. Pattern Recogni-
tion 46, 376–388 (2013)

7. Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G.: Class prediction by nearest
shrunken centroids, with applications to DNA microarrays. Statistical Science 18(1),
104–117 (2003)

8. Vapnik, V.: Statistical Learning Theory. Wiley-IEEE Press, New York (1998)


	A New Paradigm for Pattern Classification: Nearest Border Techniques
	1 Introduction
	2 Method
	2.1 The Theory of the Nearest Border (NB) Paradigm
	2.2 NB Classifiers: The Implementations of the NB Paradigm

	3 Experimental Results
	4 Conclusions and Future Work
	References




