Anomaly detection involves identifying observations that deviate from the normal behavior of a system. One of the ways to achieve this is by identifying the phenomena that characterize "normal" observations. Subsequently, based on the characteristics of data learned from the "normal" observations, new observations are classified as being either "normal" or not. Most state-of-the-art approaches, especially those which belong to the family parameterized statistical schemes, work under the assumption that the underlying distributions of the observations are stationary. That is, they assume that the distributions that are learned during the training (or learning) phase, though unknown, are not time-varying. They further assume that the same distributions are relevant even as new observations are encountered. Although such a "stationarity" assumption is relevant for many applications, there are some anomaly detection problems where stationarity cannot be assumed. For example, in network monitoring, the patterns which are learned to represent normal behavior may change over time due to several factors such as network infrastructure expansion, new services, growth of user population, etc. Similarly, in meteorology, identifying anomalous temperature patterns involves taking into account seasonal changes of normal observations. Detecting anomalies or outliers under these circumstances introduces several challenges. Indeed, the ability to adapt to changes in non-stationary environments is necessary so that anomalous observations can be identified even with changes in what would otherwise be classified as "normal" behavior. In this paper, we proposed to apply a family of weak estimators for anomaly detection in dynamic environments. In particular, we apply this theory to spam email detection. Our experimental results demonstrate that our proposal is both feasible and effective for the detection of such anomalous emails.

Additional Metadata
Persistent URL
Conference 2009 IEEE International Conference on Social Computing, SocialCom 2009
Zhan, J. (Justin), Oommen, J, & Crisostomo, J. (Johanna). (2009). Anomaly detection in dynamic social systems using weak estimators. In Proceedings - 12th IEEE International Conference on Computational Science and Engineering, CSE 2009 (pp. 18–25). doi:10.1109/CSE.2009.370