This study evaluated the ability of potassium ferrate(VI) and freeze-thaw to stabilise and dewater primary sludge. Potassium ferrate(VI) additions of 0.5 and 5.0 g/L were used as a pre-treatment prior to freeze-thaw. Samples were frozen at -10, -20 and -30 °C, and were kept frozen for 1, 8 and 15 days. The samples were subsequently thawed at room temperature in a setup which allowed meltwater to be separated from the sludge cake via gravity drainage. The meltwater was characterised in terms of fecal coliform, soluble chemical oxygen demand (COD), soluble proteins, soluble carbohydrates, pH and turbidity. The sludge cake was characterised in terms of fecal coliform, total solids (TS) and volatile solids (VS). Freeze-thaw with gravity meltwater drainage reduced the sludge volume by up to 79%. After being frozen for only 1 day, the concentrations of fecal coliform in many of the primary sludge samples were reduced to <1000 MPN/g dry solids (DS), representing >3-log inactivation in some cases. However, pre-treatment of the primary sludge with ≤5.0 g/L potassium ferrate(VI) resulted in significant increases in soluble proteins, soluble carbohydrates, and sCOD, and reduced the effectiveness of stand-alone freeze-thaw. Follow-up experiments using higher doses ranging from 5.1 to 24.9 g/L of potassium ferrate(VI) demonstrated that >5-log inactivation of fecal coliform in raw primary sludge can be achieved within 15 min using 15 g/L of potassium ferrate(VI), and the resulting concentration of fecal coliform in the sludge was 1023 MPN/g DS. Pre-treatment with 22.0 g/L of potassium ferrate(VI), followed by freeze-thaw, with only 3 days frozen, reduced the concentration of fecal coliform to below the detection limit in the meltwater and the sludge cake. This demonstrates that potassium ferrate(VI) and freeze-thaw offers the flexibility to adjust the ferrate(VI) dose to meet treatment requirements for land application, and can be used as a stand-alone sludge treatment technology for primary sludge that achieves both treatment and dewatering.

Additional Metadata
Keywords Dewatering, Ferrate, Freeze, Sludge, Thaw, Treatment
Persistent URL dx.doi.org/10.1016/j.jenvman.2017.10.065
Journal Journal of Environmental Management
Citation
Diak, J. (James), & Örmeci, B. (2017). Stabilisation and dewatering of primary sludge using ferrate(VI) pre-treatment followed by freeze-thaw in simulated drainage beds. Journal of Environmental Management. doi:10.1016/j.jenvman.2017.10.065