In freeze tolerant wood frog Rana sylvatica, the freeze-induced liberation of glucose plays a critical role in survival in response to sub-zero temperature exposure. We have shown that the glycaemic response is linked to selective changes in the expression of hepatic adrenergic receptors through which catecholamines act to produce their hepatic glycogenolytic effects. The purpose of the present study was to determine if skeletal muscle, another catecholamine-sensitive tissue with glycogenolytic potential, displayed similar or different changes. In order to achieve these objectives, skeletal muscle derived from Rana sylvatica was studied in control, frozen and thawed states. In isolated sarcolemmal fractions, freezing effected an 88% decrease in β2-adrenergic receptor expression but was without effect on the calcium pump; while thawing resulted in a recovery of the β2-adrenergic receptor to 60% of control levels and a 2.4-fold increase in calcium transport. In isolated sarcoplasmic reticular fractions, freezing effected a 52% decrease in calcium binding and a 92% decrease in oxalate-stimulated calcium uptake; while thawing elicited partial normalization to control levels to 70% with respect to calcium binding and to 47% with respect to calcium uptake. Freezing and thawing were associated with increases and decreases, receptively, in blood glucose levels but were without effect on skeletal muscle glycogen content. Thus these muscle changes in Rana sylvatica in freezing and thawing are not linked to glycogen breakdown, are different from those previously seen in liver, and may provide a role in recovery of muscle function during thawing by protecting glycogen stores for contraction and maximizing extracellular calcium for excitation-contraction coupling in the frozen state. The involvement of thyroid hormone in triggering these muscle changes is discussed. Copyright

Additional Metadata
Keywords β2-adrenergic receptor, Calcium pump, Freeze tolerance, Rana sylvatica, Sarcolemma, Sarcoplasmic reticulum, Skeletal muscle
Persistent URL
Journal Cell Biochemistry and Function
Hemmings, S.J. (Susan J.), & Storey, K. (2001). Characterization of sarcolemma and sarcoplasmic reticulum isolated from skeletal muscle of the freeze tolerant wood frog, Rana sylvatica: The β2-adrenergic receptor and calcium transport systems in control, frozen and thawed states. Cell Biochemistry and Function, 19(2), 143–152. doi:10.1002/cbf.910