Recent studies have shown that climate change is impacting the inorganic chemical characteristics of surface fresh water in permafrost areas and affecting aquatic ecosystems. Concentrations of major ions (e.g., Ca2 +, Mg2 +, SO4 2 -, NO3-) can increase following permafrost degradation with associated deepening of flow pathways and increased contributions of deep groundwater. In addition, thickening of the active layer and melting of near-surface ground ice can influence inorganic chemical fluxes from permafrost into surface water. Permafrost degradation has also the capability to modify trace element (e.g., Ni, Mn, Al, Hg, Pb) contents in surface water. Although several local and regional modifications of inorganic chemistry of surface fresh water have been attributed to permafrost degradation, a comprehensive review of the observed changes is lacking. The goal of this paper is to distil insight gained across differing permafrost settings through the identification of common patterns in previous studies, at global scale. In this review we focus on three typical permafrost configurations (pervasive permafrost degradation, thermokarst, and thawing rock glaciers) as examples and distinguish impacts on (i) major ions and (ii) trace elements. Consequences of warming climate have caused spatially-distributed progressive increases of major ion and trace element delivery to surface fresh water in both polar and mountain areas following pervasive permafrost degradation. Moreover, localised releases of major ions and trace elements to surface water due to the liberation of soluble materials sequestered in permafrost and ground ice have been found in ice-rich terrains both at high latitude (thermokarst features) and high elevation (rock glaciers). Further release of solutes and related transport to surface fresh water can be expected under warming climatic conditions. However, complex interactions among several factors able to influence the timing and magnitude of the impacts of permafrost degradation on inorganic chemistry of surface fresh water (e.g., permafrost sensitivity to thawing, modes of permafrost degradation, characteristics of watersheds) require further conceptual and mechanistic understanding together with quantitative diagnosis of the involved mechanisms in order to predict future changes with confidence.

Additional Metadata
Persistent URL
Journal Global and Planetary Change
Colombo, N. (Nicola), Salerno, F. (Franco), Gruber, S, Freppaz, M. (Michele), Williams, M. (Mark), Fratianni, S. (Simona), & Giardino, M. (Marco). (2018). Review: Impacts of permafrost degradation on inorganic chemistry of surface fresh water. Global and Planetary Change (Vol. 162, pp. 69–83). doi:10.1016/j.gloplacha.2017.11.017