Direct sensitivity analysis is applied for 3-D assessment of ozone reactivity (or ozone formation potential) in the Eastern United States. A detailed chemical mechanism (SAPRC-99) is implemented in a multiscale air quality model to calculate the reactivity of 32 explicit and 9 lumped compounds. Simulations are carried out for two different episodes and two different emission scenarios. While absolute reactivities of VOCs show a great deal of spatial variability, relative reactivities (normalized to the reactivity of a base mixture) produce a significantly more homogeneous field. Three types of domain-wide relative reactivity metrics are formed for 1-h and 8-h averaging intervals. In general, ozone reactivity metrics (with the exception of those based on daily peak ozone) are fairly robust and consistent between different episodes or emission scenarios. The 3-D metrics also show fairly similar rankings for VOC reactivity when compared to the box model scales. However, the 3-D metrics have a noticeably narrower range for species reactivities, as they result in lower reactivity for some of the more reactive, radical-producing VOCs (especially aldehydes). As expected, episodes and emission scenarios with less radical availability have higher absolute reactivities for all species and higher relative reactivities for the more radical-producing species. Finally, comparing the results with those from a different domain (central California) shows that relative reactivity metrics are comparable over these two significantly different domains.

Additional Metadata
Persistent URL
Journal Environmental Science and Technology
Hakami, A, Bergin, M.S. (Michelle S.), & Russell, A.G. (Armistead G.). (2004). Ozone formation potential of organic compounds in the Eastern United States: A comparison of episodes, inventories, and domains. Environmental Science and Technology, 38(24), 6748–6759. doi:10.1021/es035471a