2016
C*-Algebras of boolean inverse monoids-traces and invariant means
Publication
Publication
Documenta Mathematica , Volume 21 - Issue 2016 p. 809- 840
To a Boolean inverse monoid S we associate a universal C*-algebra C-B (S) and show that it is equal to Exel's tight C*-algebra of S. We then show that any invariant mean on S (in the sense of Kudryavtseva, Lawson, Lenz and Resende) gives rise to a trace on C-B(S), and vice-versa, under a condition on S equivalent to the underlying groupoid being Hausdorff. Under certain mild conditions, the space of traces of C-B (S) is shown to be isomorphic to the space of invariant means of S. We then use many known results about traces of C*-algebras to draw conclusions about invariant means on Boolean inverse monoids; in particular we quote a result of Blackadar to show that any metrizable Choquet simplex arises as the space of invariant means for some AF inverse monoid S.
Additional Metadata | |
---|---|
Documenta Mathematica | |
Starling, C. (2016). C*-Algebras of boolean inverse monoids-traces and invariant means. Documenta Mathematica, 21(2016), 809–840.
|