Using 'Simultaneous Localization and Mapping' (SLAM), mobile robots can become truly autonomous in the exploration of their environment. However, once these environments becomes too large, Multi-Robot SLAM becomes a requirement. This paper will outline how a mobile robot should decide when best to merge its maps with another robot's upon rendezvous, as opposed to doing so immediately. This decision will be based on the current status of the mapping particle filters and the current status of the environment. Using Reinforcement Learning, a model can be established and then trained upon to determine a policy capable of deciding when best to merge. This will allow the robot to incur less error during a merge compared to simply merging immediately. This policy is trained and validated using simulated mobile robot datasets.

Additional Metadata
Keywords dual representation, features, grid maps, map merging, reinforcement learning, SLAM
Persistent URL dx.doi.org/10.1109/ICSMC.2012.6377676
Conference 2012 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2012
Citation
Dinnissen, P. (Pierre), Givigi Jr., S.N. (Sidney N.), & Schwartz, H.M. (2012). Map merging of multi-robot SLAM using reinforcement learning. In Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics (pp. 53–60). doi:10.1109/ICSMC.2012.6377676