In this paper we shall provide new analysis on some fundamental properties of the Kalman filter based parameter estimation algorithms using an orthogonal decomposition approach based on the excited subspace. A theoretical analytical framework is established based on the decomposition of the covariance matrix, which appears to be very useful and effective in the analysis of a parameter estimation algorithm with the existence of an unexcited subspace. The sufficient and necessary condition for the boundedness of the covariance matrix in the Kalman filter is established. The idea of directional tracking is proposed to develop a new class of algorithms to overcome the windup problem. Based on the orthogonal decomposition approach two kinds of directional tracking algorithms are proposed. These algorithms utilize a time-varying covariance matrix and can keep stable even in the case of unsufficient and/or unbounded excitation.

Additional Metadata
Keywords Directional tracking, Kalman filter, Least squares algorithm, Recursive parameter estimation, Windup
Persistent URL dx.doi.org/10.1016/j.automatica.2003.07.011
Journal Automatica
Citation
Cao, L. (Liyu), & Schwartz, H.M. (2004). Analysis of the Kalman filter based estimation algorithm: An orthogonal decomposition approach. Automatica, 40(1), 5–19. doi:10.1016/j.automatica.2003.07.011