A novel approach to analyzing instability in permanent-magnet stepper motors is presented. It is shown that there are two kinds of unstable phenomena in this kind of motor: mid-frequency oscillation and high-frequency instability. Nonlinear bifurcation theory is used to illustrate the relationship between local instability and mid-frequency oscillatory motion. A novel analysis is presented to analyze the loss of synchronism phenomenon, which is identified as high-frequency instability. The concepts of separatrices and attractors in phase-space are used to derive a quantity to evaluate the high-frequency instability. By using this quantity one can easily estimate the stability for high supply frequencies. Furthermore, a stabilization method is presented. A generalized approach to analyze the stabilization problem based on feedback theory is given. It is shown that the mid-frequency stability and the high-frequency stability can be improved by state feedback.