We study the question whether a crossing-free 3D morph between two straight-line drawings of an n-vertex tree can be constructed consisting of a small number of linear morphing steps. We look both at the case in which the two given drawings are two-dimensional and at the one in which they are three-dimensional. In the former setting we prove that a crossing-free 3D morph always exists with O(log n) steps, while for the latter Θ(n) steps are always sufficient and sometimes necessary.

Lecture Notes in Computer Science
School of Computer Science

Arseneva, E. (Elena), Bose, P, Cano, P. (Pilar), D’Angelo, A. (Anthony), Dujmović, V, Frati, F. (Fabrizio), … Tappini, A. (Alessandra). (2018). Pole dancing: 3D morphs for tree drawings. In Lecture Notes in Computer Science. doi:10.1007/978-3-030-04414-5_27