2019
Methylamines as Nitrogen Precursors in Chemical Vapor Deposition of Gallium Nitride
Publication
Publication
Chemical vapor deposition (CVD) is one of the most important techniques for depositing thin films of the group 13 nitrides (13-Ns), AlN, GaN, InN, and their alloys, for electronic device applications. The standard CVD chemistry for 13-Ns uses ammonia as the nitrogen precursor; however, this gives an inefficient CVD chemistry, forcing N/13 ratios of 100/1 or more. Here, we investigate the hypothesis that replacing the N-H bonds in ammonia with weaker N-C bonds in methylamines will permit better CVD chemistry, allowing lower CVD temperatures and an improved N/13 ratio. Quantum chemical computations show that while the methylamines have a more reactive gas-phase chemistry, ammonia has a more reactive surface chemistry. CVD experiments using methylamines failed to deposit a continuous film, while instead micrometer-sized gallium droplets were deposited. This study shows that the nitrogen surface chemistry is most likely more important to be considered than the gas-phase chemistry when searching for better nitrogen precursors for 13-N CVD.
Additional Metadata | |
---|---|
doi.org/10.1021/acs.jpcc.9b00482 | |
The Journal of Physical Chemistry Part C | |
Organisation | Department of Chemistry |
Rönnby, K. (Karl), Buttera, S.C. (Sydney C.), Rouf, P. (Polla), Barry, S.T, Ojamäe, L. (Lars), & Pedersen, H. (Henrik). (2019). Methylamines as Nitrogen Precursors in Chemical Vapor Deposition of Gallium Nitride. The Journal of Physical Chemistry Part C. doi:10.1021/acs.jpcc.9b00482
|