Dissorophoidea, a group of temnospondyl tetrapods that first appear in the Late Carboniferous, is made up of two clades − Olsoniformes and Amphibamiformes (Branchiosauridae and Amphibamidae) − the latter of which is widely thought to have given rise to living amphibians (i.e., Lissamphibia). The lissamphibian braincase has a highly derived morphology with several secondarily lost elements; however, these losses have never been incorporated into phylogenetic analyses and thus the timing and nature of these evolutionary events remain unknown. Hindering research into this problem has been the lack of phylogenetic analyses of Dissorophoidea that includes both taxonomically dense sampling and specific characters to document changes in the braincase in the lineage leading to Lissamphibia. Here we build on a recent, broadly sampled dissorophoid phylogenetic analysis to visualize key events in the evolution of the lissamphibian braincase. Our ancestral character state reconstructions show a clear, step-wise trend towards reduction of braincase ossification leading to lissamphibians, including reduction of the sphenethmoid, loss of the basioccipital at the Amphibamiformes node, and further loss of both the basisphenoid and the hypoglossal nerve foramina at the Lissamphibia node. Our analysis confirms that the highly derived condition of the lissamphibian braincase is characterized by overall simplification in terms of the number and extent of chondrocranial ossifications.

Department of Earth Sciences

Atkins, J.B. (Jade B.), Reisz, R.R. (Robert R.), & Maddin, H. (2019). Braincase simplification and the origin of lissamphibians. PLoS ONE, 14(3). doi:10.1371/journal.pone.0213694