2019-09-15
From structured data to evolution linear partial differential equations
Publication
Publication
Journal of Computational Physics , Volume 393 p. 162- 185
This paper is devoted to the derivation of computational methods for constructing partial differential equations from data. Following some recent works [7,14,15,20], we propose a methodology based on symbolic calculus [8,9,13], pseudospectral methods [2,3] and stochastic processes [6], in order to determine non-constant coefficients of linear evolution Partial Differential Equations (PDEs), from a set of structured data constituted by solutions at given times and positions, of an unknown linear PDE.
Additional Metadata | |
---|---|
, , , , | |
doi.org/10.1016/j.jcp.2019.04.049 | |
Journal of Computational Physics | |
Organisation | School of Mathematics and Statistics |
Lorin, E. (2019). From structured data to evolution linear partial differential equations. Journal of Computational Physics, 393, 162–185. doi:10.1016/j.jcp.2019.04.049
|