Tilted fiber Bragg gratings (TFBGs) are now a well-established technology in the scientific literature, bringing numerous advantages, especially for biodetection. Significant sensitivity improvements are achieved by exciting plasmon waves on their metal-coated surface. Nowadays, a large part of advances in this topic relies on new strategies aimed at providing sensitivity enhancements. In this work, TFBGs are produced in both single-mode and multimode telecommunication-grade optical fibers, and their relative performances are evaluated for refractometry and biosensing purposes. TFBGs are biofunctionalized with aptamers oriented against HER2 (Human Epidermal Growth Factor Receptor-2), a relevant protein biomarker for breast cancer diagnosis. In vitro assays confirm that the sensing performances of TFBGs in multimode fiber are higher or identical to those of their counterparts in single-mode fiber, respectively, when bulk refractometry or surface biosensing is considered. These observations are confirmed by numerical simulations. TFBGs in multimode fiber bring valuable practical assets, featuring a reduced spectral bandwidth for improved multiplexing possibilities enabling the detection of several biomarkers.

Additional Metadata
Persistent URL dx.doi.org/10.1364/OE.385747
Journal Optics Express
Lobry, M. (Maxime), Loyez, M. (Médéric), Hassan, E.M. (Eman M.), Chah, K. (Karima), DeRosa, M.C, Goormaghtigh, E. (Erik), … Caucheteur, C. (Christophe). (2020). Multimodal plasmonic optical fiber grating aptasensor. Optics Express, 28(5), 7539–7551. doi:10.1364/OE.385747