Distance vector routing protocols (e.g., RIP) have been widely used on the Internet, and are being adapted to emerging wireless ad hoc networks. However, it is well-known that existing distance vector routing protocols are insecure due to: 1) the lack of strong authentication and authorization mechanisms; 2) the difficulty, if not impossibility, of validating routing updates which are aggregated results of other routers. In this paper, we introduce a secure routing protocol, namely S-RlP, based on a distance vector approach. In S-RIP, a router confirms the consistency of an advertised route with those nodes that have propogated that route. A reputation-based framework is proposed for determining how many nodes should be consulted, flexibly balancing security and efficiency. Our threat analysis and simulation results show that in S-RIP, a well-behaved node can uncover inconsistent routing information in a network with many misbehaving nodes assuming (in the present work) no two of them are in collusion, with relatively low extra routing overhead.

Additional Metadata
Keywords Distance Fraud, Distance Vector, Routing Security, Security Analysis
Wan, T. (Tao), Kranakis, E, & Van Oorschot, P. (2004). S-RIP: A secure distance vector routing protocol.