The mobile agent rendezvous problem consists of k ≥ 2 mobile agents trying to rendezvous or meet in a minimum amount of time on an n node ring network. Tokens and markers have been used successfully to achieve rendezvous when the problem is symmetric, e.g., the network is an anonymous ring and the mobile agents are identical and run the same deterministic algorithm. In this paper, we explore how token failure affects the time required for mobile agent rendezvous under symmetric conditions with different types of knowledge. Our results suggest that knowledge of n is better than knowledge of k in terms of achieving rendezvous as quickly as possible in the faulty token setting.