Without concern: Predicting personal-moral transgressions from psychopathy and gender

Mary B. Ritchie *, Adelle E. Forth

Department of Psychology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada

ARTICLE INFO
Article history:
Received 6 July 2015
Received in revised form 22 December 2015
Accepted 25 January 2016
Available online 5 February 2016

Keywords:
Psychopathy
Factors
Facets
Moral decision-making
Personal-moral transgressions
Harm

ABSTRACT
Characterized by a tendency to guiltlessly exploit and manipulate others (Hare, 2003), psychopathy has been labeled a disorder of moral faculties (Maibom, 2014). The association between psychopathy and moral transgressions has often been viewed as a consequence of lacking empathetic concern for others (Blair, 2007). The current study further explored the association between psychopathy and morality by isolating the factors and facets most salient to the prediction of moral transgressions. Additionally, the current study examined whether this association was moderated by gender. A sample of 557 undergraduates completed a measure of psychopathy and responded to a series of personal-moral dilemmas. Results indicated that personal-harm endorsement was most strongly associated with the interpersonal manipulative traits of psychopathy. This association was not moderated by gender. The results of this study inform the understanding of factors that may lead individuals higher in psychopathy to engage in immoral behavior.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Characterized by a tendency to guiltlessly exploit and manipulate others (Hare, 2003), often through violent means (e.g., Leistico, Salekin, DeCoster, & Rogers, 2008), psychopathy has been labeled a disorder of moral faculties (Maibom, 2014). Research suggests that individuals higher in psychopathy are more likely than individuals lower in psychopathy to endorse immoral behavior involving harm (physical or emotional; Blair, 2007). While this utilitarian bias is often attributed to emotional dysfunction (e.g., Blair, 2007; Glenn, Raine, & Schug, 2009), the characteristics of psychopathy most salient to harm endorsement have yet to be identified. To better understand this association, it is essential to consider the influence of specific psychopathic traits rather than psychopathy in general.

1.1. Moral reasoning

Numerous theories have been developed in an attempt to explain the process in which harmful behaviors are judged as right (moral) or wrong (immoral). Traditionally, moral decisions were attributed to conscious reasoning and age-related changes in moral development (Kohlberg, 1984; Piaget, 1932; Turiel, 1983). Theorists have since emphasized the role of emotion (Greene & Haidt, 2002; Greene, Sommerville, Nystrom, Darley, & Cohen, 2001). According to the dual-process theory, moral dilemmas can be classified as personal or impersonal (Greene et al., 2001). Personal-moral dilemmas involve deciding whether it is appropriate to cause serious harm to a person without deflecting a pre-existing threat. For example, this may involve deciding whether it is appropriate to save five workmen from a runaway trolley by pushing a stranger off a footbridge. Conversely, impersonal-moral dilemmas involve deciding whether it is appropriate to pull a lever that diverts the trolley onto a sidetrack, killing one person instead of five. Neurobiological studies provide evidence that distinct processes are utilized during personal- and impersonal-moral reasoning, where emotions are believed to influence personal-moral decisions and cognitive reasoning is believed to influence impersonal-moral decisions (e.g., Greene & Haidt, 2002; Greene et al., 2001). Thus, it is possible that the affective response elicited during personal-moral reasoning may discourage some people from endorsing immoral behaviors.

1.1.1. Gender differences

Although ample research has conceptualized the process of moral reasoning, there is a surprising absence of literature exploring gender differences. According to Gilligan (1982), men tend to take a justice-oriented approach (i.e., rationally respecting the law) whereas women tend to take a care-oriented approach (i.e., emotion). While this distinction is evident in the literature examining gender differences in criminal
behavior (e.g., Archer, 2004; Sabol, Couture, & Harrison, 2007), the evidence supporting gender differences in moral reasoning has been mixed. Specifically, while some researchers have provided evidence that men are more likely to endorse utilitarian responses to personal moral dilemmas than women (e.g., Fumagalli et al., 2010; Milanowicz & Bukus, 2013), others have suggested that men and women are equally likely to approach moral decisions from a justice-oriented perspective (Clapton & Sorrell, 1993; Galotti, 1989). Notably, no studies have identified higher rates of utilitarian endorsement among females than males. One characteristic that has consistently been associated with utilitarianism however, is psychopathy.

1.2. Characteristics of psychopathy

Psychopathy is a collection of maladaptive personality traits characterized by interpersonal (e.g., manipulative), affective (e.g., shallow emotions), behavioral (e.g., impulsive), and antisocial features (e.g., diverse criminal behavior; Hare, 2003). The absence of conscience among individuals higher in psychopathy allows them to engage in behaviors most others would be inhibited from acting upon (Hare, 2006). While these behaviors are often violent in nature (Hare, 2006), psychopathy has also been identified as a characteristic of more general criminal behavior (e.g., Leistico et al., 2008). A recent meta-analysis by Blais, Solodukhin, and Forth (2014) suggests psychopathy is equally related to instrumental (e.g., committing assault for the purpose of stealing a purse) and reactive violence (e.g., committing assault as an impulsive response to provocation).

Traditionally, discussions of psychopathy have revolved around a two-factor model (e.g., Hare, 1991), where Factor 1 represents the interpersonal and affective facets, and Factor 2 represents the lifestyle and antisocial features. These factors have since been divided into four facets, where Factor 1 has been subdivided into the (1) interpersonal and (2) affective facets, and Factor 2 has been subdivided into the (3) lifestyle and (4) antisocial facets (Hare, 2003). This model has been replicated across a variety of populations and measures (e.g., community, offender; Kosson et al., 2013; Neumann, Kosson, & Salekin, 2007).

1.2.1. Gender differences

It has been suggested that the prevalence rate of psychopathy differs across gender. A recent systematic review by Beryl, Chou, and Vollm (2014) provides evidence that psychopathy is less prevalent among women offenders than men offenders. Similar results have been identified among non-institutionalized samples, where women tend to receive lower psychopathy scores than men (e.g., Borroni, Somma, Andershed, Maffei, & Fossati, 2014).

1.3. Psychopathy and moral reasoning

Given the association between psychopathy and criminal behavior, it is not surprising that psychopathy has been labeled a disorder of moral faculties (e.g., Maibom, 2014). Across clinical and subclinical samples, individuals higher in psychopathy tend to endorse personal-moral harm more often than individuals lower in psychopathy (e.g., Arvan, 2013; Bartel & Pizarro, 2011; Glenn, Iyer, Graham, Koleva, & Haidt, 2009; Levenston, Patrick, Bradley, & Lang, 2000; Patil, 2015). Cleckley (1941) was the first to refer to individuals higher in psychopathy as ‘moral imbeciles’, speculating that their willingness to harm others reflected a lack of moral understanding. Contrary to Cleckley’s (1941) hypothesis, recent research suggests that individuals higher in psychopathy are able to distinguish between moral and immoral behavior (Aharoni, Sinnott-Armstrong, & Kiehl, 2014; Cima, Tonnaer, & Hauser, 2010). With evidence of moral understanding, Cima et al. (2010) propose that individuals higher in psychopathy tend to endorse immoral behavior because they do not care how their actions impact others. Although limited, research has yet to identify gender differences in moral understanding among individuals higher in psychopathy. Specifically, with a sample of offenders, Aharoni et al. (2014) found no interaction between gender and psychopathy when predicting moral understanding (Aharoni et al., 2014).

Researchers have recently begun exploring the characteristics of psychopathy associated with immoral behavior (e.g., Glenn et al., 2009; Patil, 2015). Patil (2015) provides evidence that the association between psychopathy and utilitarianism may be driven by the traits comprising Factor 1 (e.g., manipulative, callous). Researchers have also suggested that individuals higher in psychopathy tend to engage in harmful behavior because they lack elements of empathy (i.e., concern for others; Glenn et al., 2009). For example, when exposed to emotionally provocative stimuli (e.g., distress cues), individuals higher in psychopathy show reduced brain activity in regions associated with empathy (e.g., amygdala; Levenston et al., 2000). Recently, Glenn et al. (2009) identified an association between high scores on the IM facet (e.g., superficiality, deceitfulness) and reduced activity in brain regions referred to as the moral neural circuit (e.g., medial prefrontal cortex, posterior cingulate, and angular gyrus); an association that was not found with the remaining facets. Not only does this suggest that reductions in emotional responsibility impair moral decision-making, but that the interpersonal manipulative characteristics of psychopathy may drive this association (Glenn et al., 2009). Thus, disregarding the impact of their actions on others may lead individuals higher in psychopathy to make immoral decisions and endorse harmful behavior. Although evidence suggests that the association between psychopathy and moral reasoning may be trait specific (Glenn et al., 2009; Patil, 2015), the characteristics of psychopathy most salient to the endorsement of immoral behavior have yet to be identified.

1.4. Objective, rationale, and hypotheses

The current study sought to identify the factors and facets of psychopathy most salient to the prediction of harm endorsement during personal-moral decision-making and whether or not this association is moderated by gender. Although evidence suggests that psychopathy and immoral behavior are related (e.g., Arvan, 2013), this research has almost exclusively focused on psychopathy as a dichotomous construct (i.e., psychopathic versus non-psychopathic), overlooking any trait specific explanations. Further, although potential gender differences have been identified in moral reasoning (e.g., Fumagalli et al., 2010) and psychopathic behavior (e.g., Borroni, Somma, Andershed, Maffei, & Fossati, 2014), the influence of gender on the association between psychopathy and moral reasoning has been largely neglected. Based on the literature discussed, it was hypothesized that men would be more willing to endorse personal-moral harm than women, and individuals higher in psychopathy would be more willing to endorse personal-moral harm than individuals lower in psychopathy. As research has yet to identify gender differences in moral reasoning among individuals higher in psychopathy (Aharoni et al., 2014), the current study hypothesized that men and women higher in psychopathy would not differ in their endorsement of personal-harm. Finally, considering Glenn et al. (2009) and Patil (2015), it was hypothesized that Factor 1 and the interpersonal facet would be most salient to the prediction of personal-harm endorsement.

2. Methods

2.1. Participants

The sample included 557 undergraduate students. Twenty-one participants did not provide consent and were excluded from subsequent analyses. Upon visual inspection of boxplots and scatter plots, and inspection of z-scores, two outliers (where z > 3.29; Tabachnick & Fidell, 2013) were identified on the Self-Report Psychopathy Scale Short Form (SRP-SF; Paulhus, Neumann, & Hare, 2016). Leverage and
discrepancy values suggested that these two cases deviated from the mean leverage of the sample and the predicted and observed values of the SRP-SF, respectively. Global and local influence was then examined to determine whether these cases impacted the omnibus results and regression coefficients. With a large global and local impact, these two cases were deemed to be multivariate outliers (i.e., having an unusual combination of scores on key variables; Tabachnick & Fidell, 2013) and were removed from further analyses. The final sample (N = 534) consisted of 120 men and 413 women (three participants did not disclose gender), ranging in age from 17 to 53 years old (M = 20.3, SD = 4.3; 25 participants did not disclose age). While most participants were Caucasian (72.8%), the sample also included Asian (9.9%), other (7.8%), Black (6.0%), Indian (1.7%), and Aboriginal (1.3%) participants.

2.2. Materials

2.2.1. Moral reasoning

Participants completed a modified version of the Moral Dilemma Questionnaire (MDQ; Greene et al., 2001) to assess their ability to appropriately respond to personal-moral dilemmas. To examine the association between psychopathy and personal-moral transgressions a series of bivariate correlations were conducted (see Table 2). Moderate positive correlations were identified between moral transgressions and total psychopathy scores (r = .36, 95% CI [.028, .044], p < .01). Consistently, Factor 1 and Factor 2 psychopathy scores were moderately positively associated with endorsement of personal-moral transgressions (r1 = .37, 95% CI [.029, .045], p < .01; r2 = .29, 95% CI [.020, .037], p < .01, respectively). Finally, small to moderate positive correlations were identified between the psychopathy factors and total self-report psychopathy scores (r = .43, 95% CI [.35, .49], p < .01).

Table 1

<table>
<thead>
<tr>
<th>Scale</th>
<th>Overall</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M (SD)</td>
<td>α</td>
<td>M (SD)</td>
</tr>
<tr>
<td>SRP-SF</td>
<td>52.93 (.1568)</td>
<td>.93</td>
<td>59.83 (16.38)</td>
</tr>
<tr>
<td>Factor 1</td>
<td>26.95 (8.39)</td>
<td>.90</td>
<td>31.31 (9.67)</td>
</tr>
<tr>
<td>Factor 2</td>
<td>20.17 (8.68)</td>
<td>.84</td>
<td>28.79 (7.88)</td>
</tr>
<tr>
<td>IM Facet</td>
<td>13.62 (5.37)</td>
<td>.87</td>
<td>15.47 (5.76)</td>
</tr>
<tr>
<td>CA Facet</td>
<td>13.32 (4.61)</td>
<td>.78</td>
<td>15.84 (4.61)</td>
</tr>
<tr>
<td>ELS Facet</td>
<td>14.87 (4.68)</td>
<td>.79</td>
<td>16.60 (4.92)</td>
</tr>
<tr>
<td>ASB Facet</td>
<td>11.48 (3.99)</td>
<td>.75</td>
<td>12.38 (4.40)</td>
</tr>
<tr>
<td>MDQ</td>
<td>5.30 (4.64)</td>
<td>.87</td>
<td>7.38 (5.07)</td>
</tr>
</tbody>
</table>

Note. SRP-SF = Self-Report Psychopathy Scale Short Form Total Score; Factor 1 = Factor 1 psychopathy; Factor 2 = Factor 2 psychopathy; IM = interpersonal manipulation psychopathy facet; CA = callous affect psychopathy facet; ELS = erratic lifestyle psychopathy facet; ASB = antisocial behavior psychopathy facet; MDQ = Moral Dilemma Questionnaire.

2.2.2. Psychopathy

Psychopathy was assessed with the SRP-SF (Paulhus et al., press), a 29-item version of the SRP-III (Paulhus et al., 2016). In accordance with the PCL-R factor structure (Hare, 2003) and the SRP-III (Paulhus et al., 2016), the SRP-SF consists of four facets: (a) interpersonal manipulation (IM), (b) callous affect (CA), (c) erratic lifestyle (ELS), and (d) antisocial behavior (ASB). These facets can be combined to create Factor 1 (IM and CA) and Factor 2 (ELS and ASB) scores. Each item is scored on a Likert scale, where one indicated strongly disagreeing with the statement and five indicated strongly agreeing with the statement. To examine the association between psychopathy and personal-moral transgressions a series of bivariate correlations were conducted (see Table 2). Moderate positive correlations were identified between moral transgressions and total psychopathy scores (r = .36, 95% CI [.028, .044], p < .01). Consistently, Factor 1 and Factor 2 psychopathy scores were moderately positively associated with endorsement of personal-moral transgressions (r1 = .37, 95% CI [.029, .045], p < .01; r2 = .29, 95% CI [.020, .037], p < .01, respectively). Finally, small to moderate positive correlations were identified between the psychopathy factors and total self-report psychopathy scores (r = .43, 95% CI [.35, .49], p < .01).

Table 2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1. MDQ</td>
<td>1</td>
<td>.36**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. SRP-SF</td>
<td>.36**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Factor 1</td>
<td>.37**</td>
<td>.95**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Factor 2</td>
<td>.29**</td>
<td>.92**</td>
<td>.76**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. IM</td>
<td>.35**</td>
<td>.89**</td>
<td>.95**</td>
<td>.69**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. CA</td>
<td>.34**</td>
<td>.90**</td>
<td>.91</td>
<td>.74**</td>
<td>.76</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. ELS</td>
<td>.25**</td>
<td>.85**</td>
<td>.73</td>
<td>.89**</td>
<td>.68**</td>
<td>.70**</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8. ASB</td>
<td>.22**</td>
<td>.74**</td>
<td>.59**</td>
<td>.84**</td>
<td>.52**</td>
<td>.58**</td>
<td>.70**</td>
<td>1</td>
</tr>
</tbody>
</table>

Note. MDQ = Moral Dilemma Questionnaire; SRP-SF = Self-Report Psychopathy Scale Short Form Total Score; Factor 1 = Factor 1 psychopathy; Factor 2 = Factor 2 psychopathy; IM = interpersonal manipulation psychopathy facet; CA = callous affect psychopathy facet; ELS = erratic lifestyle psychopathy facet; ASB = antisocial behavior psychopathy facet. ** p < .01.
facets (i.e., IM, CA, ELS, and ASB) and moral transgressions ($r_{IM} = .35$, 95% CI [0.27, 0.43], $p < .01$; $r_{CA} = .34$, 95% CI [0.25, 0.42], $p < .01$; $r_{ELS} = .25$, 95% CI [0.15, 0.33], $p < .01$; $r_{ASB} = .22$, 95% CI [0.13, 0.31], $p < .01$, respectively). Overall, the results suggest that individuals who score higher on psychopathy are more likely to endorse personal-moral transgressions.

3.4. Logistic regression analysis

A series of hierarchical multiple linear regressions were conducted to determine whether endorsement of personal-harm could be predicted from gender, psychopathy (i.e., total, factor, and facet scores), and the accompanying gender by psychopathy interactions. All assumptions underlying linear regression were satisfied (e.g., normally distributed errors, linearity, independence of errors, multicollinearity; Fields, 2012).

The first multiple regression examined whether gender, total psychopathy (centered), and the gender by psychopathy interaction were predictive of personal-moral transgressions (see Table 3). As the interaction between total psychopathy scores and gender was not significant ($B = -0.00$, $p = .92$), the individual predictors included in model one will be the focus of interpretation. According to the Omnibus test, the predictors included in model one significantly explained 16% of the variance in personal-moral harm endorsement ($F(2, 416) = 38.51$, $p < .01$). After controlling for psychopathy, gender was identified as a significant predictor of personal-moral harm endorsement ($B = 1.77$, $p < .01$) and uniquely accounted for 17% of the variance in moral transgressions. Consistent with the AUC analysis, this result suggests that men are more likely than women to endorse personal-moral harm. After controlling for gender, total psychopathy was also a significant predictor of personal-moral harm endorsement ($B = 0.10$, $p < .01$) and uniquely accounted for 33% of the variance in moral transgressions. Thus, people higher on psychopathy are more likely to endorse personal-harm than people lower on psychopathy. Notably, the non-significant interaction between gender and psychopathy ($p = .92$) suggests that the likelihood of men higher in psychopathy endorsing personal-moral transgressions was similar to the likelihood of women higher in psychopathy.

The second multiple linear regression analysis explored whether Factor 1 and Factor 2 psychopathy (centered), gender, and the gender by Factor interactions predicted personal-moral harm endorsement (see Table 4). Again, as the interactions between psychopathy factor scores and gender were not significant in model two ($B_{F1 \times Gender} = 0.02$, $p = .87$; $B_{F2 \times Gender} = -0.02$, $p = .85$, respectively), model one will be the focus of interpretation. The results of the Omnibus test suggest that gender and the psychopathy Factor scores significantly accounted for 17% of the variance in moral transgressions ($F(3, 415) = 28.53$, $p < .01$). After controlling for Factor 1 and Factor 2 psychopathy, gender was identified as a significant predictor of personal-moral harm endorsement ($B = 1.67$, $p < .01$), uniquely accounting for 16% of the variance in moral transgressions. Again, this suggests that men are more likely than women to endorse personal-moral harm. After controlling for gender and Factor 2 psychopathy, uniquely accounting for 25% of the variance in moral transgressions, Factor 1 psychopathy was identified as a significant predictor of personal-moral harm endorsement ($B = 0.18$, $p < .01$) after controlling for gender and Factor 2 psychopathy. This suggests that people higher on Factor 1 psychopathy are more likely to endorse personal-moral harm. Interestingly, after controlling for gender and Factor 1 psychopathy, Factor 2 psychopathy did not significantly predict personal-moral transgressions ($B = -0.01$, $p = .74$).

The final multiple linear regression analysis explored whether the facets of psychopathy (centered), gender, and the gender by facet interactions predicted personal-harm endorsement (see Table 5). Again, as the two-way interactions entered in model two were non-significant, model one will be the focus of interpretation ($B_{IM \times Gender} = 0.08$, $p = .58$; $B_{CA \times Gender} = -0.10$, $p = .62$; $B_{ELS \times Gender} = 0.00$, $p = .98$; $B_{ASB \times Gender} = -0.01$, $p = .96$, respectively). The Omnibus test suggests that gender and the psychopathy facets significantly predict personal-harm endorsement ($F(5, 413) = 17.33$, $p < .01$), accounting for 17% of the variance in moral transgressions. After controlling for the psychopathy facets, gender was a significant predictor of personal-harm endorsement ($B = 1.78$, $p < .01$) and uniquely accounted for 17% of the variance in moral transgressions. Among the psychopathy facets, only the IM facet was a significant predictor of personal-harm endorsement after controlling for gender and the remaining facets ($B = .23$, $p < .01$), accounting for 18% of the variance in moral transgressions.

Table 3

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Model 1</th>
<th></th>
<th>Model 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>1.77(.51)**</td>
<td>3.50</td>
<td>[0.78, 2.77]</td>
<td>1.79(.53)**</td>
</tr>
<tr>
<td>SRP-SF</td>
<td>0.10(.01)**</td>
<td>7.02</td>
<td>[0.07, 0.12]</td>
<td>0.10(.02)**</td>
</tr>
<tr>
<td>R²</td>
<td>.16</td>
<td></td>
<td></td>
<td>−0.00(.03)</td>
</tr>
<tr>
<td>ΔR²</td>
<td>.10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Psychopathy was mean centered; SRP-SF = Self-Report Psychopathy Scale Short Form Total Score; SRP-SF × Gen = interaction between the SRP-SF and gender; ΔR² = change in R²; SE = standard error; 95% CI = 95% confidence interval.

** $p < .01$.

Table 4

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Model 1</th>
<th></th>
<th>Model 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>1.67(.50)**</td>
<td>3.30</td>
<td>[0.68, 2.66]</td>
<td>1.66(.53)**</td>
</tr>
<tr>
<td>Factor 1</td>
<td>0.18(.40)**</td>
<td>5.25</td>
<td>[0.12, 0.25]</td>
<td>0.18(.04)**</td>
</tr>
<tr>
<td>Factor 2</td>
<td>−0.02(.04)</td>
<td>−0.34</td>
<td>[−0.10, 0.07]</td>
<td>−0.01(.05)</td>
</tr>
<tr>
<td>F1 × Gender</td>
<td>0.01(.08)</td>
<td>0.17</td>
<td>[−0.15, 0.18]</td>
<td>0.01(.08)</td>
</tr>
<tr>
<td>F2 × Gender</td>
<td>−0.02(.10)</td>
<td>−0.19</td>
<td>[−0.21, 0.18]</td>
<td>−0.02(.10)</td>
</tr>
<tr>
<td>R²</td>
<td>.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔR²</td>
<td>.12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Factor 1 and Factor 2 psychopathy were mean centered; F1 × Gender = interaction between Factor 1 psychopathy and gender; F2 × Gender = interaction between Factor 2 psychopathy and gender; ΔR² = change in R²; SE = standard error; 95% CI = 95% confidence interval.

** $p < .01$.

This suggests that people higher on the IM facet of psychopathy are more likely to endorse personal-harm.

4. Discussion

The purpose of the current study was to identify the factors and facets of psychopathy most salient to the prediction of harm endorsement during personal-moral decision-making and to identify whether gender moderated this association. Consistent with previous research (e.g., Fumagalli et al., 2010), analyses indicated higher rates of personal-harm endorsement among men than women. This finding offers a potential explanation for why men tend to be more aggressive than women (e.g., Sabol et al., 2007). Analyses also indicated that individuals higher on psychopathy were more likely to endorse personal-harm. This is not surprising given the consistent association between psychopathy and immoral behavior identified in the literature (e.g., Arvan, 2013; Patil, 2015). While gender and psychopathy individually predicted moral transgressions, the interaction between gender and psychopathy was not significant. This is consistent with the results of Aharoni et al. (2014), and provides further evidence that individuals higher in psychopathy are more likely to endorse personal-harm, regardless of gender.

To identify the traits that best predict personal-harm endorsement, a series of hierarchical multiple linear regressions were conducted with the psychopathy factors and facets. Although bivariate correlations indicated that both factors were associated with transgressions, regression analysis revealed Factor 1 as the sole predictor of personal-harm endorsement after controlling for gender and Factor 2. Consistent with Patil (2015), individuals higher on Factor 1 (interpersonal and affective features) were more likely to endorse personal-harm than individuals lower on Factor 1. Upon further breaking down this association, the IM facet of psychopathy was identified as the sole predictor of personal-harm endorsement after controlling for gender and the remaining three facets. Consistent with Glenn et al. (2009), this suggests that the interpersonal manipulative characteristics of psychopathy drive involvement in immoral behavior. This is not surprising as the IM facet is most strongly associated with instrumental violence (e.g., Walsh, Swogger, & Kosson, 2009). Thus, individuals higher in psychopathy may be more willing to engage in personal-harm as they do not care about the impact of their actions on others and focus exclusively on personal gain.

As the current study utilized a convenience sample of university students to assess subclinical psychopathy, the results may not be generalizable to clinical populations. It is possible that a stronger effect exists in a clinical sample as extreme psychopathic traits and experience with immoral behavior is more prevalent. Although the association identified in the current study is consistent with research utilizing both subclinical and clinical samples (e.g., Arvan, 2013; Patil, 2015), future research should replicate these results with other samples. Finally, the use of self-report measures to assess psychopathy (i.e., SRP-SF; Paulhus et al., 2016) and moral reasoning (i.e., MDQ; Greene et al., 2001) was concerning as socially desirable responding may have biased the results. While social desirability does not appear to affect the results of psychopathy research with student samples (Lilienfeld & Hess, 2001), future research may benefit from the inclusion of a social desirability measure and alternative measurement techniques beyond self-report (e.g., interviews).

Taken together, the results of the current study suggest that moral decisions can be impacted by individual differences in psychopathic traits. In particular, the interpersonal manipulative characteristics of psychopathy appear to drive the endorsement of personal-harm. Although more research is needed to generalize these results, it may be possible to reduce involvement in harmful behavior by targeting interpersonal characteristics in treatment. Not only has the manipulative interpersonal style of individuals higher in psychopathy been strongly associated with instrumental violence (Walsh et al., 2009), but research from the general correctional literature also provides evidence that reducing antisocial attitudes in treatment can effectively reduce criminal behavior (e.g., Andrews & Bonta, 2010). Further, it is important that future research examining the association between psychopathy and moral reasoning consider trait specific characteristics rather than psychopathy as a whole. With evidence that the IM facet drives the association between psychopathy and harm, research would be limited if the individual effect of psychopathic traits was not considered. Overall, the results of the current study inform the understanding of mechanisms that influence moral transgressions and traits that may drive individuals higher in psychopathy to engage in immoral behavior at a disproportional rate.

References

References

