2008-09-01
Liouville's sextenary quadratic forms x2 + y2 + z2 + t2 + 2u2 + 2v2, x2 + y2 + 2z2 + 2t2 + 2u2 + 2v2 and x2 + 2y2 + 2z2 + 2t2 + 2u2 + 4v2
Publication
Publication
Far East Journal of Mathematical Sciences , Volume 30 - Issue 3 p. 547- 556
Liouville's asserted formulae for the number of representations of a positive integer by each of the sextenary quadratic forms x2 + y2 + z2 + t2 + 2u2 + 2v2, x2 + y2 + 2z2 + 2t2 + 2u2 + 2v2and x2 + 2y2 + 2z2 + 2t2 + 2u2 + 4v2are proved.
Additional Metadata | |
---|---|
Representations, Sextenary quadratic form s, Theta functions | |
Far East Journal of Mathematical Sciences | |
Organisation | School of Mathematics and Statistics |
Alaca, A, Alaca, S, & Williams, K.S. (2008). Liouville's sextenary quadratic forms x2 + y2 + z2 + t2 + 2u2 + 2v2, x2 + y2 + 2z2 + 2t2 + 2u2 + 2v2 and x2 + 2y2 + 2z2 + 2t2 + 2u2 + 4v2. Far East Journal of Mathematical Sciences, 30(3), 547–556.
|