2008-09-01
Liouville's sextenary quadratic forms x2 + y2 + z2 + t2 + 2u2 + 2v2, x2 + y2 + 2z2 + 2t2 + 2u2 + 2v2 and x2 + 2y2 + 2z2 + 2t2 + 2u2 + 4v2
Publication
Publication
Far East Journal of Mathematical Sciences
,
Volume 30
-
Issue 3
p. 547-
556
Liouville's asserted formulae for the number of representations of a positive integer by each of the sextenary quadratic forms x2 + y2 + z2 + t2 + 2u2 + 2v2, x2 + y2 + 2z2 + 2t2 + 2u2 + 2v2and x2 + 2y2 + 2z2 + 2t2 + 2u2 + 4v2are proved.
Additional Metadata | |
---|---|
Keywords | Representations, Sextenary quadratic form s, Theta functions |
Journal | Far East Journal of Mathematical Sciences |
Citation |
Alaca, A, Alaca, S, & Williams, K.S. (2008). Liouville's sextenary quadratic forms x2 + y2 + z2 + t2 + 2u2 + 2v2, x2 + y2 + 2z2 + 2t2 + 2u2 + 2v2 and x2 + 2y2 + 2z2 + 2t2 + 2u2 + 4v2. Far East Journal of Mathematical Sciences, 30(3), 547–556.
|