Cytokines, which are immunological messengers facilitating both intra-and inter-system communication, are considered central players in the neuroinflammatory cascades associated with the neurodegenerative process in Parkinson's disease (PD) and other neurological disorders. They have also been implicated in depression and other cognitive (e.g., memory impairment, dementia) and affective disturbances (e.g., anxiety) that show high co-morbidity with neurodegenerative diseases. As such, cytokines may hold great promise as serological biomarkers in PD, with potential applications ranging from early diagnosis and disease staging, to prognosis, drug discovery, and tracking the response to treatment. Subclassification or risk stratification in PD could be based (among other things) on reliably determined cytokine panel profiles or signatures of particular co-morbid disease states or at-risk groups (e.g., PD alone, PD with depression and/or dementia). Researchers and clinicians seeking to describe cytokine variations in health vs. disease will benefit greatly from technologies that allow a high degree of multiplexing and thus permit the simultaneous determination of a large roster of cytokines in single small-volume samples. The need for such highly paralleled assays is underscored by the fact that cytokines do not act in isolation but rather against a backdrop of complementary and antagonistic cytokine effects; ascribing valence to the actions of any one cytokine thus requires specific knowledge about the larger cytokine milieu. This chapter provides a technological overview of the major cytokine multiplex assay platforms before discussing the implications of such tools for biomarker discovery and related applications in PD and its depressive and cognitive co-morbidities.

Additional Metadata
Keywords Biomarker, Co-morbidity, Cytokine, Inflammation, Multiplex assays, Parkinson's disease, Psychoneuroimmunology
Persistent URL
Litteljohn, D. (Darcy), & Hayley, S. (2012). Cytokines as potential biomarkers for Parkinson's disease: A multiplex approach. doi:10.1007/978-1-62703-071-7_7