This paper proposes a pro-active solution to the Frugal Feeding Problem (FFP) in Wireless Sensor Networks. The FFP attempts to find energy-efficient routes for a mobile service entity to rendezvous with each member of a team of mobile robots. Although the complexity of the FFP is similar to the Traveling Salesman Problem (TSP), we propose an efficient solution, completely distributed and localized for the case of a fixed rendezvous location (i.e., service facility with limited number of docking ports) and mobile capable entities (sensors). Our pro-active solution reduces the FFP to finding energy-efficient routes in a dynamic Compass Directed unit Graph (CDG). The proposed CDG incorporates ideas from forward progress routing and the directionality of compass routing in an energy-aware unit sub-graph. Navigating the CDG guarantees that each sensor will reach the rendezvous location in a finite number of steps. The ultimate goal of our solution is to achieve energy equilibrium (i.e., no further sensor losses due to energy starvation) by optimizing the use of the shared resource (recharge station). We also examine the impact of critical parameters such as transmission range, cost of mobility and sensor knowledge in the overall performance.

Additional Metadata
Persistent URL
Velazquez, E. (Elio), Santoro, N, & Lanthier, M. (2011). Pro-active strategies for the frugal feeding problem in wireless sensor networks. doi:10.1007/978-3-642-23583-2_14