We introduce a new concept of constructing a generalized Voronoi inverse (GVI) of a given tessellation of the plane. Our objective is to place a set S i of one or more sites in each convex region (cell), such that all edges of coincide with edges of Voronoi diagram V(S), where S = â̂ i S i, and â̂€ i,j, i ≠ j, S i â̂

Additional Metadata
Persistent URL dx.doi.org/10.1007/978-3-642-41905-8-3
Banerjee, S. (Sandip), Bhattacharya, B.B. (Bhargab B.), Das, S. (Sandip), Karmakar, A. (Arindam), Maheshwari, A, & Roy, S. (Sasanka). (2013). On the construction of generalized voronoi inverse of a rectangular tessellation. doi:10.1007/978-3-642-41905-8-3