2014
Cloud resource auto-scaling system based on hidden markov model (HMM)
Publication
Publication
The elasticity characteristic of cloud computing enables clients to acquire and release resources on demand. This characteristic reduces clients' cost by making them pay for the resources they actually have used. On the other hand, clients are obligated to maintain Service Level Agreement (SLA) with their users. One approach to deal with this cost-performance trade-off is employing an auto-scaling system which automatically adjusts application's resources based on its load. In this paper we have proposed an auto-scaling system based on Hidden Markov Model (HMM). We have conducted an experiment on Amazon EC2 infrastructure to evaluate our model. Our results show HMM can generate correct scaling actions in 97% of time. CPU utilization, throughput, and response time are being considered as performance metrics in our experiment.
Additional Metadata | |
---|---|
Cloud computing, Hidden Markov model, proactive auto-scaling, resource provisioning | |
dx.doi.org/10.1109/ICSC.2014.43 | |
8th IEEE International Conference on Semantic Computing, ICSC 2014 | |
Organisation | Department of Systems and Computer Engineering |
Nikravesh, A.Y. (Ali Yadavar), Ajila, S, & Lung, C.H. (2014). Cloud resource auto-scaling system based on hidden markov model (HMM). Presented at the 8th IEEE International Conference on Semantic Computing, ICSC 2014. doi:10.1109/ICSC.2014.43
|