Rapid acceleration of a spherical shell of liquid following central detonation of a high explosive causes the liquid to form fine jets that are similar in appearance to the particle jets that are formed during explosive dispersal of a packed layer of solid particles. Of particular interest is determining the dependence of the scale of the jet-like structures on the physical parameters of the system, including the fluid properties (e.g., density, viscosity, and surface tension) and the ratio of the mass of the liquid to that of the explosive. The present paper presents computational results from a multi-material hydrocode describing the dynamics of the explosive dispersal process. The computations are used to track the overall features of the early stages of dispersal of the liquid layer, including the wave dynamics, and motion of the spall and accretion layers. The results are compared with new experimental results of spherical charges surrounded by a variety of different fluids, including water, glycerol, ethanol, and vegetable oil, which together encompass a significant range of fluid properties. The results show that the number of jet structures is not sensitive to the fluid properties, but primarily dependent on the mass ratio. Above a certain mass ratio of liquid fill-to-explosive burster (F / B), the number of jets is approximately constant and consistent with an empirical model based on the maximum thickness of the accretion layer. For small values of F / B, the number of liquid jets is reduced, in contrast with explosive powder dispersal, where small F / B yields a larger number of particle jets. A hypothetical explanation of these features based on the nucleation of cavitation is explored numerically.

Additional Metadata
Keywords Experiment, Explosion, Fragmentation, Modelling
Persistent URL dx.doi.org/10.1007/s00193-016-0671-y
Journal Shock Waves
Citation
Milne, A., Longbottom, A., Frost, D.L., Loiseau, J., Goroshin, S., & Petel, O. (2017). Explosive fragmentation of liquids in spherical geometry. Shock Waves, 27(3), 383–393. doi:10.1007/s00193-016-0671-y